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Characterizations for some types of DNA graphs
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Vertex induced subgraphs of directed de Bruijn graphs with labels of fixed length k
and over α letter alphabet are (α, k)-labelled. DNA graphs are (4, k)-labelled graphs.
Pendavingh et al. proved that it is NP-hard to determine the smallest value αk(D) for
which a directed graph D can be (αk(D), k)-labelled for any fixed k � 3. In this paper,
we obtain the following formulas: αk(Cn) = � k−1√n� and αk(Pn) = � k−1√n + 1� for cycle
Cn and path Pn . Accordingly, we show that both cycles and paths are DNA graphs.
Next we prove that rooted trees and self-adjoint digraphs admit a (�, k)-labelling for
some positive integer k and they are DNA graphs if and only if � ≤ 4, where � is the
maximum number in all out-degrees and in-degrees of such digraphs.
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1. Introduction

Błażewicz et al. [4] introduced DNA graphs, which have vertices labelled in
a special way by words over an alphabet {A, C, G, T } corresponding to the four
nucleotides of DNA chains: adenine, cytosine, guanine and thymine. Such graphs
are used in the computational and reconstruction phase of DNA chain sequenc-
ing by hybridization (SBH) [1].

For a directed graph D with vertex-set V (D) and arc-set A(D), we assign
every vertex v a label with length k as (l1(v), . . . , lk(v)) such that every li (v)

belongs to the set {1, . . . , α}. Such a labelling is called an (α, k)-labelling if the
distinct vertices of D have different labels, and for any arc (u, v) of H , li (u) =
li−1(v) for i = 2, . . . , k and vice versa. For given k > 1 and α > 0, if D has an
(α, k)-labelling, we call that D can be (α, k)-labelled. Figure 1 shows a digraph
D with a (3, 3)-labelling. Hence D is (3, 3)-labelled.

Let D = (V, A) be a digraph. For any arc e = (u, v) of D, u is called the
tail of e and v the head of e. For any given vertex v of D, a vertex w of D
is an in-neighbour or out-neighbour of v according as (w, v) or (v, w) is an arc
of D. The number of in-neighbors of v is called the in-degree of v, denoted by
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Figure 1. A digraph D with a (3, 3)-labelling.

d−(v). Similarly, the out-degree d+(v) of v is the number of out-neighbours of
v. The maximum out-degree and maximum in-degree of D are defined, respec-
tively, as �+(D) = max{d+(v) : v ∈ V (D)} and �−(D) = max{d−(v) : v ∈
V (D)}. Put �(D) := max{�+(D), �−(D)}. If no confusion can arise, we write
�, �+, and �− instead of �(D), �+(D), and �−(D), respectively. The other
concepts of digraphs not given here can be found in [2].

For a directed graph D = (V, A), its line digraph L(D) has vertex-set
V (L(D)) = A(D) such that there is an arc from x to y in L(D) if and only if
the head of arc x in D is the tail of arc y in D. A digraph H is a line digraph
if there is a digraph D such that H ∼= L(D). Błażewicz et al. [4] showed that if
a digraph D can be (α, k)-labelled for some integers α > 0 and k > 1, then D is
a line digraph.

A digraph D is a DNA graph if and only if there exists an integer k > 1
such that D admits a (4, k)-labelling. Recently, Pendavingh et al. [8] showed that
it is a NP-hard problem to decide whether a given digraph is a DNA graph. If
a digraph D can be (α, k)-labelled for some integers k > 1 and α > 0, then D
also can be (α + 1, k)-labelled. Let αk(D) be the smallest integer α such that D
can be (α, k)-labelled for fixed integer k > 1. Pendavingh et al. [8] also showed
that it is NP-hard to decide whether a given digraph has an (α, k)-labelling for
any fixed integer k ≥ 3 and an input parameter α. Hence, it is also NP-hard [3]
to determine αk(D) for any given digraph D and for any fixed integer k ≥ 3 (this
problem is polynomial-solved for k = 2 [4]).

An (α, k)-labelled graph can be described by an induced digraph of the
directed de Bruijn graph B(α, k). B(α, k) [5] is a directed graph with αk verti-
ces labelled by the words of length k over a certain alphabet of cardinality α:
there is an arc from a vertex v labelled by (v1, v2, . . . , vk) to a vertex w labelled
by (w1, w2, . . . , wk) if and only if vi = wi−1 for i = 2, . . . , k. The out-degree and
in-degree of each vertex are both equal to α.

In this paper, we first introduce a novel labelling of a digraph called quasi-
(α, k)-labelling, and establish a relationship between such two labellings and
other useful lemmas. In section 3, by using the pancyclicity of directed de Bruijn
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graphs, we obtain simple formulas to compute αk(D) for both cycle and path
D: αk(Cn) = � k−1

√
n � and αk(Pn) = � k−1

√
n + 1 �, where �x� denotes the least

integer with no less than number x . Accordingly, both cycles and paths are
DNA graphs. In section 4, we show that every out-tree T +

s (in-tree T −
s ) can be

(�, k)−labelled for large k by applying �-nary numeral system. Then we obtain
that an out-tree T +

s (in-tree T −
s ) is a DNA graph if and only if � � 4. Finally,

we show that a connected self-adjoint digraph, i.e. a digraph obtained from a
unique cycle C by generating simultaneously an out-tree (resp. in-tree) at each
vertex, is a DNA graph if and only if � � 4.

2. Quasi-(α, k)-labelling l∗

To study an (α, k)-labelling l of a digraph D, we introduce a novel label-
ling of D as follows. For a directed graph D = (V, A), let l∗ : V → {1, . . . , α}k ,
i.e. every vertex v of D is assigned a label l∗(v) = (l∗1(v), . . . , l∗k (v)) with every
l∗i (v) ∈ {1, . . . , α}. We call l∗ a quasi-(α, k)-labelling of D, if

(i) for any two distinct vertices u and v, their labels are different, i.e.
l∗(u) 
= l∗(v), and

(ii) if (u, v) is an arc in D, then l∗i (u) = l∗i−1(v) for i = 2, . . . , k.

For given integers k > 1 and α > 0, if D has a quasi-(α, k)-labelling, we say
D can be quasi-(α, k)-labelled. For example, figure 2 shows a digraph D with a
quasi-(3, 2)-labelling l, which is indeed not a (3,2)-labelling since l2(v3) = l1(v2),
but (v3, v2) is not arc of D.

Notice that if D is an induced subgraph of B(α, k), then D can be (α, k)-
labelled; if D is a subgraph of B(α, k), then D can be quasi-(α, k)-labelled. The
next lemma gives a relation between such two labellings.

Lemma 2.1. Let D be a digraph. If D is quasi-(α, k − 1)-labelled, then its line
digraph L(D) is (α, k)-labelled.

Figure 2. A digraph D with a quasi-(3, 2)-labelling.
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Proof. Let l∗ be a quasi-(α, k − 1)-labelling of D. Let v be any vertex of L(D)

corresponding to an arc (v1, v2) in D. An (α, k)-labelling l of L(D) is defined as

l(v) = ( l1(v), l2(v) , . . . , lk−1(v) , lk(v) ) (2.1)

= ( l∗1(v1), l∗2(v1), . . . , l∗k−1(v1), l∗k−1(v2) ) (2.2)

= ( l∗1(v1), l∗1(v2), . . . , l∗k−2(v2), l∗k−1(v2) ). (2.3)

Clearly, for each i , li (v) ∈ {1, 2, . . . , α}. For any two distinct vertices u and v

of L(D), corresponding to arcs (u1, u2) and (v1, v2), respectively, we have l(u) 
=
l(v). Otherwise, by equations (2.1)–(2.3), l(u) = l(v) implies that l∗(u1) = l∗(v1)

and l∗(u2) = l∗(v2). Hence u1 = v1 and u2 = v2, contradicting u 
= v.
Further, if (u, v) is an arc of L(D), then u2 = v1 in D, and

l(u) = ( l∗1(u1), l∗1(u2), . . . , l∗k−2(u2), l∗k−1(u2) ),

l(v) = ( l∗1(v1), l∗2(v1), . . . , l∗k−1(v1), l∗k−1(v2) ).

So we have ( l2(u), . . . , lk(u)) = (l1(v), . . . , lk−1(v) ). Conversely, suppose that
( l2(u), . . . , lk(u) ) = ( l1(v), . . . , lk−1(v) ). By equations (2.1) – (2.3) again, we
have

l∗(u2) = ( l∗1(u2), . . . , l∗k−1(u2) ) = ( l∗1(v1), . . . , l∗k−1(v1) ) = l∗(v1).

Since l∗ is a quasi-(α, k − 1)-labelling of D, u2 = v1. Hence (u, v) ∈ A(L(D)).

Lemma 2.1 is exemplified in figure 3.
Note that the converse of lemma 2.1 is not true. A counterexample is

shown in figure 4. In fact, L(D) can be (2, 4)-labelled, but D cannot be quasi-
(2, k)-labelled for any integer k > 1. Suppose to the contrary that D has a quasi-
(2, k)-labelling l∗ for some k > 1. Let l∗(v6) = (ā, b), where ā ∈ {1, 2}k−1 and
b ∈ {1, 2}. Then l∗(v3) = (a1, ā) and l∗(v4) = (a2, ā), where a1, a2 ∈ {1, 2}
and a1 
= a2. Further, l∗(v5) = (ā, b1) and l∗(v7) = (ā, b2). Since b1, b2 and

Figure 3. A quasi-(2, 2)-labelling of D is transformed into a (2,3)-labelling of L(D).
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Figure 4. A counterexample to the converse of lemma 2.1.

b belong to {1, 2}, two of them have the same values. This implies that two in
v5, v6 and v7 are assigned the same labels under l∗, a contradiction.

Next, we give some lemmas which will be used repeatedly later in this
paper.

Lemma 2.2. If a digraph D is (α, k)-labelled, then α ≥ �.

Proof. Let v be a vertex of D such that d+(v) = �+. For any (α, k)-labelling
l of D, let l(v) = (l1(v), . . . , lk(v)). For every out-neighbour u of v, we have
l(u) = (l2(v), . . . , lk(v), a). Since v has �+ out-neighbours and any two distinct
out-neighbours have different labels, we use at least �+ words. Hence we have
α � �+. Similarity, we can see that α � �−. So α � � = max{�+, �−}.

The converse of a directed graph D is a new digraph obtained from D by
reversing the direction of every arc of D, denoted by Dc. Clearly, (Dc)c = D.

Lemma 2.3. If a digraph D can be (α, k)-labelled, then the converse Dc also can
be (α, k)-labelled.

Proof. Let l be an (α, k)-labelling of D. A labelling l
′

of Dc is defined: for each
vertex v ∈ V (Dc), let l

′
i (v) := lk+1−i (v) (i = 1, . . . , k). We shall verify that l

′
is

an (α, k)-labelling of Dc. For any two distinct vertices u and v of Dc, we have
l
′
i (v) ∈ {1, . . . , α} and l

′
(u) 
= l

′
(v).

If (u, v) is an arc of Dc, then (v, u) is an arc of D. Hence we have

( l
′
2(u), . . . , l

′
k(u) ) = ( lk−1(u), . . . , l1(u) )

= ( lk(v), . . . , l2(v) )

= ( l
′
1(v), . . . , l

′
k−1(v) ).
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Conversely, suppose that ( l
′
2(u), . . . , l

′
k(u) ) = ( l

′
1(v), . . . , l

′
k−1(v) ). We have

( l1(u), . . . , lk−1(u) ) = ( l
′
k(u), . . . , l

′
2(u) )

= ( l
′
k−1(v), . . . , l

′
1(v) )

= ( l2(v), . . . , lk(v) ).

Since l is an (α, k)-labelling of D, (v, u) is an arc of D. Hence (u, v) is an arc
of Dc.

3. Computing αk(Cn) and αk(Pn)

A cycle Cn is a digraph (V, A):

V = {v1, v2, . . . , vn}, and A = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.
A path Pn = (V, A) is a digraph with

V = {v1, v2, . . . , vn}, and A = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.
In particular, C1 is a loop and P1 is a single vertex. We can see that if a digraph
D without loops, then αk(D) � 2 for any integer k > 1. Otherwise, there exists
a (1, k)-labelling l of D for some integer k > 1. Then for any vertex v of D,
l(v) = (1, 1, . . . , 1) and there is a loop at v, a contradiction. Hence αk(C1) = 1
and αk(P1) = 2. From now on, we suppose that n � 2.

Lemma 3.1. If l is an (α, k)−labelling of Cn or Pn, for any 1 � i < j � n, we
have

(l1(vi ), . . . , lk−1(vi )) 
= (l1(v j ), . . . , lk−1(v j )).

Proof. Suppose to the contrary that there exist two vertices vi and v j (1 � i <

j � n) such that

(l1(vi ), . . . , lk−1(vi )) = (l1(v j ), . . . , lk−1(v j )).

Considering arc (v j−1, v j ), we have

(l2(v j−1), . . . , lk(v j−1)) = (l1(v j ), . . . , lk−1(v j ))

= (l1(vi ), . . . , lk−1(vi )).

By the definition of (α, k)-labelling, there exists an arc from v j−1 to vi . This
implies i = j , a contradiction.
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A directed graph of order n is pancyclic if it has cycles of all length
3, 4, . . . , n. Every directed de Bruijn graph B(α, k) is pancyclic (cf. Refs. [7] and
[2, pp. 308]).

Theorem 3.2. αk(Cn) = � k−1
√

n �.

Proof. We first show that Cn can be (� k−1
√

n �, k)-labelled. Let α := � k−1
√

n �.
Then n � αk−1. By the pancyclicity of directed de Bruijn graph B(α, k − 1), Cn
is a subgraph of B(α, k−1). Hence, the (α, k−1)-labelling of B(α, k−1) induces a
quasi-(α, k −1)-labelling of Cn. By lemma 2.1, Cn

∼= L(Cn) can be (α, k)-labelled.
Hence αk(Cn) � � k−1

√
n �. It remains to show that αk(Cn) � α. Let β := αk(Cn).

If n > βk−1, for any (β, k)-labelling l of Cn, there exist two vertices vi and v j ,
such that

(l1(vi ), . . . , lk−1(vi )) = (l1(v j ), . . . , lk−1(v j )),

which contradicts lemma 3.1. So n � βk−1, i.e. αk(Cn) � � k−1
√

n �.

Corollary 3.3. Any cycle Cn is a DNA graph.

Proof. For k � �log4 n� + 1, αk(Cn) � 4. Accordingly, Cn can be (4, k)-
labelled.

In the remainder of this section, we compute the αk(Pn). Since Pn = Cn+1−
vn+1, any (α, k)-labelling of Cn+1 gives an (α, k)-labelling of Pn. Hence, theorem
3.2 implies the following result.

Lemma 3.4.

αk(Pn) � αk(Cn+1) = � k−1√n + 1 �.

Theorem 3.5.

αk(Pn) = � k−1√n + 1 �.

Proof. By lemma 3.1, similar to the proof of theorem 3.2, we have αk(Pn) �
� k−1

√
n �. Let α := � k−1

√
n �. Then (α − 1)k−1 < n � αk−1. If n < αk−1, then

(α − 1)k−1 < n + 1 � αk−1. By lemma 3.4, we have

αk(Pn) � � k−1√n + 1 � = α = � k−1
√

n � � αk(Pn). (3.1)

So the all equalities in (3.1) hold.
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If n = αk−1, then α + 1 � k−1
√

n + 1 > α. Hence � k−1
√

n + 1 � = α + 1. If
Pn admits an (α, k)−labelling, by lemma 3.1, there are exactly n = αk−1 pair-
wise different sequences (l1(vi ), . . . , lk−1(vi )), i = 1, . . . , n. Hence there exists vi
(1 � i � n) such that

(l1(vi ), . . . , lk−1(vi )) = (l2(vn), . . . , lk(vn)).

This implies that Pn has an arc from vn to vi , a contradiction. So

αk(Pn) � α + 1 = � k−1√n + 1 �. (3.2)

Hence the theorem follows from (3.2) and lemma 3.4.

For k � �log4(n + 1)� + 1, αk(Pn) � 4. So we arrive in the following corol-
lary.

Corollary 3.6. Any path is a DNA graph.

4. Rooted trees

A digraph T is an out-tree (in-tree) if T is an oriented tree and T has only
one vertex s of in-degree (out-degree) zero. Then s is called the root of T . Let
T +

s and T −
s denote out-trees and in-trees rooted at s, respectively. Since the con-

verse of an in-tree is an out-tree and vice versa, by lemma 2.3, a rooted tree can
be (α, k)-labelled if and only if its converse can be (α, k)-labelled. So in the sec-
tion, we only consider out-trees.

For any non-trivial out-tree T +
s , �+ � �− = 1. Hence � = �+. For any

vertex v of T +
s , the layer number of v is defined as the distance from s, and the

height of T +
s is defined as the maximum value of layer numbers of all vertices of

T +
s . Let T +

s (�, p) denote an out-tree rooted at s with height p and out-degree
� for any vertex of layer number less than p. Clearly, if T +

s has height p and
maximum out-degree �, then T +

s is an induced subgraph of T +
s (�, p) (figure 5).

Since T +
s (1, p) is a path, we assume that � � 2 in the following.

If T +
s (�, p) can be (α, k)-labelled, then its all induced subgraphs also can

be (α, k)-labelled for the same α and k. Clearly, if T +
s (�, p) can be (α, k)-

labelled, by lemma 2.2, we have α � �. The next thoerem shows that T +
s (�, p)

can be (�, p + 2)-labelled.

Theorem 4.1. T +
s (�, p) can be (�, p + 2)-labelled for � � 2.

Proof. Let T ′(�, p) be another out-tree obtained from T +
s (�, p) by adding a

new vertex t together with an arc from t to s. For example, T ′(3, 3) is shown in
figure 6. Clearly, L(T ′(�, p)) ∼= T +

s (�, p). By lemma 2.1, it is sufficient to give
a quasi-(�, p + 1)-labelling of T ′(�, p).
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(a) (b)

Figure 5. (a) An out-tree T +
s with p = 3 and � = 3, and (b) a complete out-tree T +

s (3, 3).

Figure 6. T ′(3, 3).

For convenience, we replace alphabet {1, . . . , �} by {0, . . . , �−1}. The verti-
ces of T ′(�, p) are marked by pairs of non-negative integers in accordance with
the following rules:

(i) t and s are denoted by v0,0 and v0,1, respectively, and

(ii) for a vertex already marked by vi,t with (i, t) 
= (0, 0) and i<p,
all the out-neighbours of vi,t are denoted by vi+1,(t−1)�+1, vi+1,(t−1)�+2,

. . . , vi+1,t�, respectively.

Clearly, different vertices have different marks. We claim that

1 � n � �i , for each vertex v := vi,n with 1 � i � p. (4.1)

To prove this claim, we use induction on i . For i = 1, since v is an
out-neighbour of s := v0,1, 1 � n � �. Now let i � 2. Suppose that the assertion
is true for smaller i . Let u be the unique in-neighbour of v, marked by vi−1,t .
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By the marked rules,

(t − 1)� + 1 � n � t�. (4.2)

By the induction hypothesis, we have

1 � t � �i−1. (4.3)

Hence claim (4.1) follows from (4.2) and (4.3).
Now we define an integer-valued function f on the vertex-set of T ′(�, p)

as follows:

f (vi,n) = �i + n − 1 (4.4)

for each vertex vi,n of T ′(�, p). By (4.1) and (4.4), we have

f (vi,n) � �p + n − 1 � �p + �p − 1 � �p+1 − 1. (4.5)

For any two distinct vertices u := vi1,n1 and v := vi2,n2 , we have

f (u) 
= f (v). (4.6)

If i1 = i2, then n1 
= n2 and

f (u) = �i1 + n1 − 1 
= �i2 + n2 − 1 = f (v).

Otherwise, suppose that i2 > i1. By (4.1) and (4.4), we have

f (u) = �i1 + n1 − 1 � �i1 + �i1 − 1 = 2�i1 − 1, and

f (v) = �i2 + n2 − 1 � �i2 = �i2−i1 · �i1 � 2�i1 .

So (4.6) follows.
Let l∗(vi,n) be the representation of f (vi,n) by �-nary numeral system with

(p + 1)-digit. More precisely, let

f (vi,n) = ap�
p + ap−1�

p−1 + · · · + a1� + a0,

where 0 � a j � � − 1 is an integer for each 0 � j � p. Then l∗(vi,n) =
(ap, ap−1, . . . , a1, a0). In the following, we show that l∗ is a quasi-(α, p + 1)-
labelling of T ′(�, p).

By (4.5) and (4.6), we can see that it is sufficient to show if (v1, v2) is an arc
of T ′(�, p), then (l∗2(v1), . . . , l∗p+1(v1)) = (l∗1(v2), . . . , l∗p(v2)). If v1 = t and v2 =
s, f (v1) = 0 and f (v2) = 1. Then l∗(u) = (0, . . . , 0, 0) and l∗(v) = (0, . . . , 0, 1).
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So suppose that v1 = vi,n1 
= t . As (v1, v2) is an arc, we have v2 = vi+1,n2 , n2 =
(n1 − 1)� + m (1 � m � �) and

f (v2) = �i2 + n2 − 1

= �i1+1 + (n1 − 1)� + m − 1

= (�i1 + n1 − 1)� + m − 1

= f (v1)� + m − 1.

If f (v1) = ap�
p + ap−1�

p−1 + · · · + a1� + a0, 0 � ai < �, i = 0, . . . , p, then
f (v2) = ap−1�

p+· · ·+a0�+m−1. This implies that l∗(v1) = (0, ap−1, . . . , a1, a0)

and l∗(v2) = (ap−1, . . . , a1, a0, m − 1). Accordingly,

(l∗2(v1), . . . , l∗p+1(v1)) = (l∗1(v2), . . . , l∗p(v2)).

As above, l∗ is a quasi-(�, p + 1)-labelling of T ′(�, p).

From the above proof, we can see that for every k � p + 1, if l∗(v) is
denoted by the representation of f (v) by �-nary numeral system with k-digit,
l∗ will be a quasi-(α, k)-labelling of T ′(�, p). Hence T +

s (�, p) can be (�, k)-
labelled for k � p + 2.

Corollary 4.2. If T +
s is an out-tree with height p and maximum out-degree �,

then αk(T +
s ) = � for any integer k � p + 2.

Proof. Let k be any integer such that k � p + 2. By lemma 2.2, we have
αk(T +

s ) � �. Since T +
s is an induced subgraph of T +

s (�, p), any (�, k)-label-
ling of T +

s (�, p) induces a (�, k)-labelling of T +
s . By theorem 4.1, we have that

T +
s (�, p) has a (�, k)-labelling. So αk(T +

s ) � �. Hence αk(T +
s ) = �.

Corollary 4.3. An out-tree T +
s is a DNA graph if and only if �(T +

s ) � 4.

Proof. Let T +
s be an out-tree with height p and maximum out-degree �. If

� � 4, by theorem 4.1, T +
s can be (�, p + 2)−labelled, and T +

s is thus a DNA
graph. Conversely, if T +

s is a DNA graph, by lemma 2.2, we have � � 4.

5. Self-adjoint digraphs

A digraph D is self-adjoint if D is isomorphic to its line digraph L(D).
Let A be the set of all digraphs A, for which there exists a digraph sequence
A0, . . . , Am = A satisfying A0 = Cn and each Ai+1 arises from Ai by adding
some new vertices v1, . . . , vt and arcs (v, v1), . . . , (v, vt ) where v is a vertex of
Ai . Define Ac = {Ac|A ∈ A}. We can see that a digraph A ∈ A (Ac) if and
only if A is the union of a cycle Cn and n pairwise disjoint out-trees (in-trees)
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T1, . . . , Tn such that each Ti has the root vi lying in Cn. Hao [6] showed that a
connected digraph A is self-adjoint if and only if A ∈ A or Ac.

By lemma 2.3, if A can be (α, k)-labelled, then Ac also can be (α, k)-
labelled. So we only consider A in the following. For every digraph A ∈ A,
it is easy to see d−(v) = 1 for every v ∈ V (A). Recall that � = �+ is the
maximum out-degree of A and n the length of the unique cycle in A. Let p :=
max(p1, . . . , pn), where pi is the height of Ti for each 1 � i � n.

We define a sign system as vt
i (a1, . . . , at ) (1 � i � n, 0 � a j � � − 1, 0 �

t � p) to represent the vertices of A. First, we denote the vertices of the unique
cycle Cn by v0

1, . . . , v0
n in a way. Next let u1, . . . , uk be the out-neighbours of

v0
i in Ti and mark u j by v1

i ( j), j = 1, 2, . . . , k. Then for every already marked
vertex vt

i (a1, . . . , at ), t � 1, its all out-neighbours w0, . . . , wk′ are marked by
vt+1

i (a1, . . . , at , at+1), at+1 = 0, 1, . . . , k′. For example, figure 7 gives such a sign
system of vertices of a self-adjoint graph A1 with � = 2, n = 3 and p = 3. Since
A is a cycle for � = 1, assume that � � 2 in the following.

Theorem 5.1. Let A ∈ A, n, p, � � 2 be defined as above. Then A can be (�, k+
1)-labelled, where k = (� p

n � + 1)n.

Proof. We first construct a self-adjoint digraph A′ ∈ A from A by adding some
new vertices and arcs: every Ti of A′ is rooted at v0

i with height p, d+
Ti

(v0
i ) =

� − 1 and any other vertex has out-degree � if its layer number is less than p.
So both A and A′ have the same height, and A is an induced subgraph of A′. By
lemma 2.1, if A′ can be quasi-(�, k)-labelled, then A′ can be (�, k + 1)-labelled
and A can be (�, k+1)-labelled. So it is sufficient to give a quasi-(�, k)-labelling
of A′ in the following.

For convenience, we replace alphabet {1, . . . ,�} with {0, . . . , � − 1}. Let
k1 := � p

n �, k := (k1 +1)n and r = k1n− p. Then 0 � r < n and p = k1n−r . First,
we label the vertices of the cycle Cn as follows. Let l(v0

i ) := (Sn+1−i , . . . , Sn+1−i
︸ ︷︷ ︸

k1+1

),

where Si = (0, . . . , 0, 1, 0, . . . , 0) is a sequence of length n such that the ith posi-
tion is 1 and the others are 0, for i = 1, . . . , n. Obviously, this is a quasi-(2, k)-
labelling of Cn. Hence for any two integers i < j , we have that

l(v0
j ) = (l1+ j−i (v

0
i ), l2+ j−i (v

0
i ), . . . , lk(v

0
i ), l1(v

0
i ), . . . , l j−i (v

0
i )). (5.1)

Next we label any other vertex v of A. If v = v1
i ( j), then v is an out-neighbour

of v0
i . Let l(v1

i ( j)) := (l2(v0
i ), . . . , lk(v0

i ), a), where a = 1− l1(v0
i ), if j = 1; a = j ,

otherwise. If v = vt
i (a1, . . . , at ) for 2 � t � p, then v is an out-neighbour of

u = vt−1
i (a1, . . . , at−1). Let l(vt

i (a1, . . . , at )) := (l2(u), . . . , lk(u), at ).
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We claim that

l j (v
t
i (a1, . . . , at )) =

⎧

⎨

⎩

l j+t (v
0
i ), j � k − t ,

1 − l1(v0
i ), j = k − t + 1 and a1 = 1,

a j+t−k, otherwise.
(5.2)

To prove this claim, for each fixed i we proceed by induction on t . For t = 0
and 1, it is trivially true. So let t � 2 and suppose that the claim is true for
smaller t . Let v := vt

i (a1, . . . , at ) and let u be the unique in-neighbour of v. Then
u = vt−1

i (a1, . . . , at−1).
For j = 1, 2, . . . , k − 1 , l j (v) = l j+1(u). Further, if j � k − t , then j + 1 �

k − (t − 1) and

l j (v) = l j+1(u) = l j+1+(t−1)(v
0
i ) = l j+t (v

0
i )

by the induction hypothesis; if j = k−t +1 and a1 = 1, then j +1 = k−(t −1)+1
and

l j (v) = l j+1(u) = 1 − l(v0
i ).

Otherwise, if j � k − 1,

l j (v) = l j+1(u) = a j+1+(t−1)−k = a j+t−k .

If j = k, l j (v) = at from the above labelling method. So claim (5.2) follows.
Finally, we show that this labelling l is a quasi-(�, k)-labelling of A′. It is

sufficient to verify that distinct vertices of A′ have different labels. Suppose not,
there exist two distinct vertices u and v of A′ such that l(u) = l(v). There are
two cases to be considered.
Case 1. u, v lie in the same tree Ti .

Let u = vt
i (b1, . . . , bt ) and v = v

q
i (c1, . . . , cq). If t = q, then there exists j ∈

{1, 2, . . . , t} such that b j 
= c j since u 
= v. Hence, we have l j+k−t (u) 
= l j+k−t (v)

by equation (5.2). So suppose q > t . By simple computation and comparison we
obtain n � k −q � k − t . Since (l1(u), . . . , ln(u)) = (l1(v), . . . , ln(v)), by equation
(5.2) we can see that

(l1+t (v
0
i ), . . . , ln+t (v

0
i )) = (l1+q(v0

i ), . . . , ln+q(v0
i )), (5.3)

which is equivalent to

(l1(v
0
i+t ), . . . , ln(v

0
i+t )) = (l1(v

0
i+q), . . . , ln(v

0
i+q))

from equation (5.1); that is, Sn+1−(t+i) = Sn+1−(q+i). Then we have q ≡ t (mod
n). Since q > t , there exists an integer g � 1 such that q = t + gn. But by
equation (5.2), we have

lk−q+1(v) = 1 − l1(v
0
i ) or c1 (c1 � 2), and

lk−q+1(u) = lk−t−gn+1(u) = lk−gn+1(v
0
i ) = l(k1−g+1)n+1(v

0
i ) = l1(v

0
i ).
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Hence lk−q+1(u) 
= lk−q+1(v), a contradiction.
Case 2. u, v lie in different trees Ti and Tj (i 
= j).

Let u = vt
i (b1, . . . , bt ) and v = v

q
j (c1, . . . , cq). Without loss of generality,

suppose that q � t and i = 1. Considering the first n digits of l(u) and l(v), by
equation (5.1), we have

(l1(u), . . . , ln(u))=(l1+t (v
0
1), . . . , ln+t (v

0
1))=(l1(v0

1+t ), . . . , ln(v0
1+t ))= Sn+1−(1+t),

(l1(v), . . . , ln(v))=(l1+q(v0
j ), . . . , ln+q(v0

j ))=(l1(v0
j+q), . . . , ln(v0

j+q))= Sn+1−( j+q).

Hence, 1 + t ≡ q + j (mod n). Since q � t , there exists an integer g � 1 such
that q + j = 1 + t + gn. By equation (5.2), we have

lk−q+1(v) = 1 − l1(v
0
j ) or c1 (c1 � 2),

lk−q+1(u) = lk−t−gn+ j (u) = lk−gn+ j (v
0
1) = l(k1−g+1)n+ j (v

0
1) = l j (v

0
1) = l1(v

0
j ).

So lk−q+1(u) 
= lk−q+1(v), a contradiction.
By cases 1 and 2, we can see that all vertices of A′ have pairwise different

labels. Accordingly, l is a quasi-(�, k)-labelling of A′.

As an example we now give a (2, 7)-labelling of a self-disjoint digraph A1
from the method used in the proof of theorem 5.1. The sign system of vertices
of A1 were previously given in figure 7. We first construct another self-adjoint
graph A′

1 as shown in figure 8(a) such that A1 is an an induced subgraph of A′
1.

Then, a quasi-(2,6)-labelling l of A′
1 is constructed in figure 8(a). Finally, l can

Figure 7. A self-adjoint graph A1 with � = 2, n = 3, p = 3 and a sign system of vertices.
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(a) (b)

Figure 8. (a) A quasi-(2,6)-labelling of A′
1 with � = 2, p = 3, and (b) a (2,7)-labelling of A1.

be transformed into a (2,7)-labelling of A′
1 by lemma 2.1, which induces a (2,7)-

labelling of A1 as shown in figure 8(b).
Combining theorem 5.1 with lemmas 2.2 and 2.3, we can obtain the follow-

ing result.

Corollary 5.2. A connected self-adjoint digraph A is a DNA graph if and only if
� � 4.
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