Characterizations for some types of DNA graphs

Xianyue Li and Heping Zhang*
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
E-mails: lixiany03@st.lzu.edu.cn, zhanghp@lzu.edu.cn

Received 22 January 2006; revised 12 February 2006

Abstract

Vertex induced subgraphs of directed de Bruijn graphs with labels of fixed length k and over α letter alphabet are (α, k)-labelled. DNA graphs are $(4, k)$-labelled graphs. Pendavingh et al. proved that it is NP-hard to determine the smallest value $\alpha_{k}(D)$ for which a directed graph D can be $\left(\alpha_{k}(D), k\right)$-labelled for any fixed $k \geqslant 3$. In this paper, we obtain the following formulas: $\alpha_{k}\left(C_{n}\right)=\lceil\sqrt[k-1]{n}\rceil$ and $\alpha_{k}\left(P_{n}\right)=\lceil\sqrt[k-1]{n+1}\rceil$ for cycle C_{n} and path P_{n}. Accordingly, we show that both cycles and paths are DNA graphs. Next we prove that rooted trees and self-adjoint digraphs admit a (Δ, k)-labelling for some positive integer k and they are DNA graphs if and only if $\Delta \leq 4$, where Δ is the maximum number in all out-degrees and in-degrees of such digraphs.

KEY WORDS: DNA graph, de Bruijn graph, (α, k)-labelling

1. Introduction

Błażewicz et al. [4] introduced DNA graphs, which have vertices labelled in a special way by words over an alphabet $\{A, C, G, T\}$ corresponding to the four nucleotides of DNA chains: adenine, cytosine, guanine and thymine. Such graphs are used in the computational and reconstruction phase of DNA chain sequencing by hybridization (SBH) [1].

For a directed graph D with vertex-set $V(D)$ and arc-set $A(D)$, we assign every vertex v a label with length k as $\left(l_{1}(v), \ldots, l_{k}(v)\right)$ such that every $l_{i}(v)$ belongs to the set $\{1, \ldots, \alpha\}$. Such a labelling is called an (α, k)-labelling if the distinct vertices of D have different labels, and for any arc (u, v) of $H, l_{i}(u)=$ $l_{i-1}(v)$ for $i=2, \ldots, k$ and vice versa. For given $k>1$ and $\alpha>0$, if D has an (α, k)-labelling, we call that D can be (α, k)-labelled. Figure 1 shows a digraph D with a (3, 3)-labelling. Hence D is (3, 3)-labelled.

Let $D=(V, A)$ be a digraph. For any arc $e=(u, v)$ of D, u is called the tail of e and v the head of e. For any given vertex v of D, a vertex w of D is an in-neighbour or out-neighbour of v according as (w, v) or (v, w) is an arc of D. The number of in-neighbors of v is called the in-degree of v, denoted by

[^0]

Figure 1. A digraph D with a (3,3)-labelling.
$d^{-}(v)$. Similarly, the out-degree $d^{+}(v)$ of v is the number of out-neighbours of v. The maximum out-degree and maximum in-degree of D are defined, respectively, as $\Delta^{+}(D)=\max \left\{d^{+}(v): v \in V(D)\right\}$ and $\Delta^{-}(D)=\max \left\{d^{-}(v): v \in\right.$ $V(D)\}$. Put $\Delta(D):=\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\}$. If no confusion can arise, we write Δ, Δ^{+}, and Δ^{-}instead of $\Delta(D), \Delta^{+}(D)$, and $\Delta^{-}(D)$, respectively. The other concepts of digraphs not given here can be found in [2].

For a directed graph $D=(V, A)$, its line digraph $L(D)$ has vertex-set $V(L(D))=A(D)$ such that there is an arc from x to y in $L(D)$ if and only if the head of $\operatorname{arc} x$ in D is the tail of arc y in D. A digraph H is a line digraph if there is a digraph D such that $H \cong L(D)$. Błażewicz et al. [4] showed that if a digraph D can be (α, k)-labelled for some integers $\alpha>0$ and $k>1$, then D is a line digraph.

A digraph D is a $D N A$ graph if and only if there exists an integer $k>1$ such that D admits a ($4, k$)-labelling. Recently, Pendavingh et al. [8] showed that it is a NP-hard problem to decide whether a given digraph is a DNA graph. If a digraph D can be (α, k)-labelled for some integers $k>1$ and $\alpha>0$, then D also can be $(\alpha+1, k)$-labelled. Let $\alpha_{k}(D)$ be the smallest integer α such that D can be (α, k)-labelled for fixed integer $k>1$. Pendavingh et al. [8] also showed that it is NP-hard to decide whether a given digraph has an (α, k)-labelling for any fixed integer $k \geq 3$ and an input parameter α. Hence, it is also NP-hard [3] to determine $\alpha_{k}(D)$ for any given digraph D and for any fixed integer $k \geq 3$ (this problem is polynomial-solved for $k=2$ [4]).

An (α, k)-labelled graph can be described by an induced digraph of the directed de Bruijn graph $B(\alpha, k) . B(\alpha, k)$ [5] is a directed graph with α^{k} vertices labelled by the words of length k over a certain alphabet of cardinality α : there is an arc from a vertex v labelled by $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ to a vertex w labelled by $\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ if and only if $v_{i}=w_{i-1}$ for $i=2, \ldots, k$. The out-degree and in-degree of each vertex are both equal to α.

In this paper, we first introduce a novel labelling of a digraph called quasi(α, k)-labelling, and establish a relationship between such two labellings and other useful lemmas. In section 3, by using the pancyclicity of directed de Bruijn
graphs, we obtain simple formulas to compute $\alpha_{k}(D)$ for both cycle and path $D: \alpha_{k}\left(C_{n}\right)=\lceil\sqrt[k-1]{n}\rceil$ and $\alpha_{k}\left(P_{n}\right)=\lceil\sqrt[k-1]{n+1}\rceil$, where $\lceil x\rceil$ denotes the least integer with no less than number x. Accordingly, both cycles and paths are DNA graphs. In section 4 , we show that every out-tree T_{s}^{+}(in-tree T_{s}^{-}) can be (Δ, k)-labelled for large k by applying Δ-nary numeral system. Then we obtain that an out-tree T_{s}^{+}(in-tree T_{s}^{-}) is a DNA graph if and only if $\Delta \leqslant 4$. Finally, we show that a connected self-adjoint digraph, i.e. a digraph obtained from a unique cycle C by generating simultaneously an out-tree (resp. in-tree) at each vertex, is a DNA graph if and only if $\Delta \leqslant 4$.

2. Quasi- (α, k)-labelling l^{*}

To study an (α, k)-labelling l of a digraph D, we introduce a novel labelling of D as follows. For a directed graph $D=(V, A)$, let $l^{*}: V \rightarrow\{1, \ldots, \alpha\}^{k}$, i.e. every vertex v of D is assigned a label $l^{*}(v)=\left(l_{1}^{*}(v), \ldots, l_{k}^{*}(v)\right)$ with every $l_{i}^{*}(v) \in\{1, \ldots, \alpha\}$. We call l^{*} a quasi- (α, k)-labelling of D, if
(i) for any two distinct vertices u and v, their labels are different, i.e. $l^{*}(u) \neq l^{*}(v)$, and
(ii) if (u, v) is an arc in D, then $l_{i}^{*}(u)=l_{i-1}^{*}(v)$ for $i=2, \ldots, k$.

For given integers $k>1$ and $\alpha>0$, if D has a quasi- (α, k)-labelling, we say D can be quasi- (α, k)-labelled. For example, figure 2 shows a digraph D with a quasi-(3,2)-labelling l, which is indeed not a (3,2)-labelling since $l_{2}\left(v_{3}\right)=l_{1}\left(v_{2}\right)$, but $\left(v_{3}, v_{2}\right)$ is not arc of D.

Notice that if D is an induced subgraph of $B(\alpha, k)$, then D can be (α, k) labelled; if D is a subgraph of $B(\alpha, k)$, then D can be quasi- (α, k)-labelled. The next lemma gives a relation between such two labellings.

Lemma 2.1. Let D be a digraph. If D is quasi- $(\alpha, k-1)$-labelled, then its line digraph $L(D)$ is (α, k)-labelled.

Figure 2. A digraph D with a quasi-(3, 2)-labelling.

Proof. Let l^{*} be a quasi- $(\alpha, k-1)$-labelling of D. Let v be any vertex of $L(D)$ corresponding to an $\operatorname{arc}\left(v_{1}, v_{2}\right)$ in D. An (α, k)-labelling l of $L(D)$ is defined as

$$
\begin{align*}
l(v) & =\left(l_{1}(v), l_{2}(v), \ldots, l_{k-1}(v), l_{k}(v)\right) \tag{2.1}\\
& =\left(l_{1}^{*}\left(v_{1}\right), l_{2}^{*}\left(v_{1}\right), \ldots, l_{k-1}^{*}\left(v_{1}\right), l_{k-1}^{*}\left(v_{2}\right)\right) \tag{2.2}\\
& =\left(l_{1}^{*}\left(v_{1}\right), l_{1}^{*}\left(v_{2}\right), \ldots, l_{k-2}^{*}\left(v_{2}\right), l_{k-1}^{*}\left(v_{2}\right)\right) . \tag{2.3}
\end{align*}
$$

Clearly, for each $i, l_{i}(v) \in\{1,2, \ldots, \alpha\}$. For any two distinct vertices u and v of $L(D)$, corresponding to arcs $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$, respectively, we have $l(u) \neq$ $l(v)$. Otherwise, by equations (2.1)-(2.3), $l(u)=l(v)$ implies that $l^{*}\left(u_{1}\right)=l^{*}\left(v_{1}\right)$ and $l^{*}\left(u_{2}\right)=l^{*}\left(v_{2}\right)$. Hence $u_{1}=v_{1}$ and $u_{2}=v_{2}$, contradicting $u \neq v$.

Further, if (u, v) is an arc of $L(D)$, then $u_{2}=v_{1}$ in D, and

$$
\begin{aligned}
l(u) & =\left(l_{1}^{*}\left(u_{1}\right), l_{1}^{*}\left(u_{2}\right), \ldots, l_{k-2}^{*}\left(u_{2}\right), l_{k-1}^{*}\left(u_{2}\right)\right), \\
l(v) & =\left(l_{1}^{*}\left(v_{1}\right), l_{2}^{*}\left(v_{1}\right), \ldots, l_{k-1}^{*}\left(v_{1}\right), l_{k-1}^{*}\left(v_{2}\right)\right) .
\end{aligned}
$$

So we have $\left(l_{2}(u), \ldots, l_{k}(u)\right)=\left(l_{1}(v), \ldots, l_{k-1}(v)\right)$. Conversely, suppose that $\left(l_{2}(u), \ldots, l_{k}(u)\right)=\left(l_{1}(v), \ldots, l_{k-1}(v)\right)$. By equations (2.1) - (2.3) again, we have

$$
l^{*}\left(u_{2}\right)=\left(l_{1}^{*}\left(u_{2}\right), \ldots, l_{k-1}^{*}\left(u_{2}\right)\right)=\left(l_{1}^{*}\left(v_{1}\right), \ldots, l_{k-1}^{*}\left(v_{1}\right)\right)=l^{*}\left(v_{1}\right)
$$

Since l^{*} is a quasi- $(\alpha, k-1)$-labelling of $D, u_{2}=v_{1}$. Hence $(u, v) \in A(L(D))$.
Lemma 2.1 is exemplified in figure 3.
Note that the converse of lemma 2.1 is not true. A counterexample is shown in figure 4 . In fact, $L(D)$ can be $(2,4)$-labelled, but D cannot be quasi$(2, k)$-labelled for any integer $k>1$. Suppose to the contrary that D has a quasi$(2, k)$-labelling l^{*} for some $k>1$. Let $l^{*}\left(v_{6}\right)=(\bar{a}, b)$, where $\bar{a} \in\{1,2\}^{k-1}$ and $b \in\{1,2\}$. Then $l^{*}\left(v_{3}\right)=\left(a_{1}, \bar{a}\right)$ and $l^{*}\left(v_{4}\right)=\left(a_{2}, \bar{a}\right)$, where $a_{1}, a_{2} \in\{1,2\}$ and $a_{1} \neq a_{2}$. Further, $l^{*}\left(v_{5}\right)=\left(\bar{a}, b_{1}\right)$ and $l^{*}\left(v_{7}\right)=\left(\bar{a}, b_{2}\right)$. Since b_{1}, b_{2} and

Figure 3. A quasi-(2, 2)-labelling of D is transformed into a $(2,3)$-labelling of $L(D)$.

Figure 4. A counterexample to the converse of lemma 2.1.
b belong to $\{1,2\}$, two of them have the same values. This implies that two in v_{5}, v_{6} and v_{7} are assigned the same labels under l^{*}, a contradiction.

Next, we give some lemmas which will be used repeatedly later in this paper.

Lemma 2.2. If a digraph D is (α, k)-labelled, then $\alpha \geq \Delta$.
Proof. Let v be a vertex of D such that $d^{+}(v)=\Delta^{+}$. For any (α, k)-labelling l of D, let $l(v)=\left(l_{1}(v), \ldots, l_{k}(v)\right)$. For every out-neighbour u of v, we have $l(u)=\left(l_{2}(v), \ldots, l_{k}(v), a\right)$. Since v has Δ^{+}out-neighbours and any two distinct out-neighbours have different labels, we use at least Δ^{+}words. Hence we have $\alpha \geqslant \Delta^{+}$. Similarity, we can see that $\alpha \geqslant \Delta^{-}$. So $\alpha \geqslant \Delta=\max \left\{\Delta^{+}, \Delta^{-}\right\}$.

The converse of a directed graph D is a new digraph obtained from D by reversing the direction of every arc of D, denoted by D^{c}. Clearly, $\left(D^{c}\right)^{c}=D$.

Lemma 2.3. If a digraph D can be (α, k)-labelled, then the converse D^{c} also can be (α, k)-labelled.

Proof. Let l be an (α, k)-labelling of D. A labelling l^{\prime} of D^{c} is defined: for each vertex $v \in V\left(D^{c}\right)$, let $l_{i}^{\prime}(v):=l_{k+1-i}(v)(i=1, \ldots, k)$. We shall verify that l^{\prime} is an (α, k)-labelling of D^{c}. For any two distinct vertices u and v of D^{c}, we have $l_{i}^{\prime}(v) \in\{1, \ldots, \alpha\}$ and $l^{\prime}(u) \neq l^{\prime}(v)$.

If (u, v) is an arc of D^{c}, then (v, u) is an arc of D. Hence we have

$$
\begin{aligned}
\left(l_{2}^{\prime}(u), \ldots, l_{k}^{\prime}(u)\right) & =\left(l_{k-1}(u), \ldots, l_{1}(u)\right) \\
& =\left(l_{k}(v), \ldots, l_{2}(v)\right) \\
& =\left(l_{1}^{\prime}(v), \ldots, l_{k-1}^{\prime}(v)\right)
\end{aligned}
$$

Conversely, suppose that $\left(l_{2}^{\prime}(u), \ldots, l_{k}^{\prime}(u)\right)=\left(l_{1}^{\prime}(v), \ldots, l_{k-1}^{\prime}(v)\right)$. We have

$$
\begin{aligned}
\left(l_{1}(u), \ldots, l_{k-1}(u)\right) & =\left(l_{k}^{\prime}(u), \ldots, l_{2}^{\prime}(u)\right) \\
& =\left(l_{k-1}^{\prime}(v), \ldots, l_{1}^{\prime}(v)\right) \\
& =\left(l_{2}(v), \ldots, l_{k}(v)\right) .
\end{aligned}
$$

Since l is an (α, k)-labelling of $D,(v, u)$ is an arc of D. Hence (u, v) is an arc of D^{c}.

3. Computing $\alpha_{k}\left(C_{n}\right)$ and $\alpha_{k}\left(P_{n}\right)$

A cycle C_{n} is a digraph (V, A) :

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad \text { and } \quad A=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\} .
$$

A path $P_{n}=(V, A)$ is a digraph with

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad \text { and } \quad A=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)\right\} .
$$

In particular, C_{1} is a loop and P_{1} is a single vertex. We can see that if a digraph D without loops, then $\alpha_{k}(D) \geqslant 2$ for any integer $k>1$. Otherwise, there exists a ($1, k$)-labelling l of D for some integer $k>1$. Then for any vertex v of D, $l(v)=(1,1, \ldots, 1)$ and there is a loop at v, a contradiction. Hence $\alpha_{k}\left(C_{1}\right)=1$ and $\alpha_{k}\left(P_{1}\right)=2$. From now on, we suppose that $n \geqslant 2$.

Lemma 3.1. If l is an $(\alpha, k)-$ labelling of C_{n} or P_{n}, for any $1 \leqslant i<j \leqslant n$, we have

$$
\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right) \neq\left(l_{1}\left(v_{j}\right), \ldots, l_{k-1}\left(v_{j}\right)\right) .
$$

Proof. Suppose to the contrary that there exist two vertices v_{i} and $v_{j}(1 \leqslant i<$ $j \leqslant n$) such that

$$
\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right)=\left(l_{1}\left(v_{j}\right), \ldots, l_{k-1}\left(v_{j}\right)\right) .
$$

Considering arc $\left(v_{j-1}, v_{j}\right)$, we have

$$
\begin{aligned}
\left(l_{2}\left(v_{j-1}\right), \ldots, l_{k}\left(v_{j-1}\right)\right) & =\left(l_{1}\left(v_{j}\right), \ldots, l_{k-1}\left(v_{j}\right)\right) \\
& =\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right)
\end{aligned}
$$

By the definition of (α, k)-labelling, there exists an arc from v_{j-1} to v_{i}. This implies $i=j$, a contradiction.

A directed graph of order n is pancyclic if it has cycles of all length $3,4, \ldots, n$. Every directed de Bruijn graph $B(\alpha, k)$ is pancyclic (cf. Refs. [7] and [2, pp. 308]).

Theorem 3.2. $\alpha_{k}\left(C_{n}\right)=\lceil\sqrt[k-1]{n}\rceil$.
Proof. We first show that C_{n} can be $(\lceil\sqrt[k-1]{n}\rceil, k)$-labelled. Let $\alpha:=\lceil\sqrt[k-1]{n}\rceil$. Then $n \leqslant \alpha^{k-1}$. By the pancyclicity of directed de Bruijn graph $B(\alpha, k-1), C_{n}$ is a subgraph of $B(\alpha, k-1)$. Hence, the $(\alpha, k-1)$-labelling of $B(\alpha, k-1)$ induces a quasi- $(\alpha, k-1)$-labelling of C_{n}. By lemma 2.1, $C_{n} \cong L\left(C_{n}\right)$ can be (α, k)-labelled. Hence $\alpha_{k}\left(C_{n}\right) \leqslant\lceil\sqrt[k-1]{n}\rceil$. It remains to show that $\alpha_{k}\left(C_{n}\right) \geqslant \alpha$. Let $\beta:=\alpha_{k}\left(C_{n}\right)$. If $n>\beta^{k-1}$, for any (β, k)-labelling l of C_{n}, there exist two vertices v_{i} and v_{j}, such that

$$
\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right)=\left(l_{1}\left(v_{j}\right), \ldots, l_{k-1}\left(v_{j}\right)\right)
$$

which contradicts lemma 3.1. So $n \leqslant \beta^{k-1}$, i.e. $\alpha_{k}\left(C_{n}\right) \geqslant\lceil\sqrt[k-1]{n}\rceil$.

Corollary 3.3. Any cycle C_{n} is a DNA graph.

Proof. For $k \geqslant\left\lceil\log _{4} n\right\rceil+1, \alpha_{k}\left(C_{n}\right) \leqslant 4$. Accordingly, C_{n} can be $(4, k)-$ labelled.

In the remainder of this section, we compute the $\alpha_{k}\left(P_{n}\right)$. Since $P_{n}=C_{n+1}-$ v_{n+1}, any (α, k)-labelling of C_{n+1} gives an (α, k)-labelling of P_{n}. Hence, theorem 3.2 implies the following result.

Lemma 3.4.

$$
\alpha_{k}\left(P_{n}\right) \leqslant \alpha_{k}\left(C_{n+1}\right)=\lceil\sqrt[k-1]{n+1}\rceil
$$

Theorem 3.5.

$$
\alpha_{k}\left(P_{n}\right)=\lceil\sqrt[k-1]{n+1}\rceil
$$

Proof. By lemma 3.1, similar to the proof of theorem 3.2, we have $\alpha_{k}\left(P_{n}\right) \geqslant$ $\lceil\sqrt[k-1]{n}\rceil$. Let $\alpha:=\lceil\sqrt[k-1]{n}\rceil$. Then $(\alpha-1)^{k-1}<n \leqslant \alpha^{k-1}$. If $n<\alpha^{k-1}$, then $(\alpha-1)^{k-1}<n+1 \leqslant \alpha^{k-1}$. By lemma 3.4, we have

$$
\begin{equation*}
\alpha_{k}\left(P_{n}\right) \leqslant\lceil\sqrt[k-1]{n+1}\rceil=\alpha=\lceil\sqrt[k-1]{n}\rceil \leqslant \alpha_{k}\left(P_{n}\right) \tag{3.1}
\end{equation*}
$$

So the all equalities in (3.1) hold.

If $n=\alpha^{k-1}$, then $\alpha+1 \geqslant \sqrt[k-1]{n+1}>\alpha$. Hence $\lceil\sqrt[k-1]{n+1}\rceil=\alpha+1$. If P_{n} admits an (α, k)-labelling, by lemma 3.1, there are exactly $n=\alpha^{k-1}$ pairwise different sequences $\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right), i=1, \ldots, n$. Hence there exists v_{i} $(1 \leqslant i \leqslant n)$ such that

$$
\left(l_{1}\left(v_{i}\right), \ldots, l_{k-1}\left(v_{i}\right)\right)=\left(l_{2}\left(v_{n}\right), \ldots, l_{k}\left(v_{n}\right)\right)
$$

This implies that P_{n} has an arc from v_{n} to v_{i}, a contradiction. So

$$
\begin{equation*}
\alpha_{k}\left(P_{n}\right) \geqslant \alpha+1=\lceil\sqrt[k-1]{n+1}\rceil \tag{3.2}
\end{equation*}
$$

Hence the theorem follows from (3.2) and lemma 3.4.
For $k \geqslant\left\lceil\log _{4}(n+1)\right\rceil+1, \alpha_{k}\left(P_{n}\right) \leqslant 4$. So we arrive in the following corollary.

Corollary 3.6. Any path is a DNA graph.

4. Rooted trees

A digraph T is an out-tree (in-tree) if T is an oriented tree and T has only one vertex s of in-degree (out-degree) zero. Then s is called the root of T. Let T_{s}^{+}and T_{s}^{-}denote out-trees and in-trees rooted at s, respectively. Since the converse of an in-tree is an out-tree and vice versa, by lemma 2.3, a rooted tree can be (α, k)-labelled if and only if its converse can be (α, k)-labelled. So in the section, we only consider out-trees.

For any non-trivial out-tree $T_{s}^{+}, \Delta^{+} \geqslant \Delta^{-}=1$. Hence $\Delta=\Delta^{+}$. For any vertex v of T_{s}^{+}, the layer number of v is defined as the distance from s, and the height of T_{s}^{+}is defined as the maximum value of layer numbers of all vertices of T_{s}^{+}. Let $T_{s}^{+}(\Delta, p)$ denote an out-tree rooted at s with height p and out-degree Δ for any vertex of layer number less than p. Clearly, if T_{s}^{+}has height p and maximum out-degree Δ, then T_{s}^{+}is an induced subgraph of $T_{s}^{+}(\Delta, p)$ (figure 5). Since $T_{s}^{+}(1, p)$ is a path, we assume that $\Delta \geqslant 2$ in the following.

If $T_{s}^{+}(\Delta, p)$ can be (α, k)-labelled, then its all induced subgraphs also can be (α, k)-labelled for the same α and k. Clearly, if $T_{s}^{+}(\Delta, p)$ can be (α, k) labelled, by lemma 2.2, we have $\alpha \geqslant \Delta$. The next thoerem shows that $T_{s}^{+}(\Delta, p)$ can be $(\Delta, p+2)$-labelled.

Theorem 4.1. $T_{s}^{+}(\Delta, p)$ can be $(\Delta, p+2)$-labelled for $\Delta \geqslant 2$.
Proof. Let $T^{\prime}(\Delta, p)$ be another out-tree obtained from $T_{s}^{+}(\Delta, p)$ by adding a new vertex t together with an arc from t to s. For example, $T^{\prime}(3,3)$ is shown in figure 6. Clearly, $L\left(T^{\prime}(\Delta, p)\right) \cong T_{s}^{+}(\Delta, p)$. By lemma 2.1, it is sufficient to give a quasi- $(\Delta, p+1)$-labelling of $T^{\prime}(\Delta, p)$.

Figure 5. (a) An out-tree T_{s}^{+}with $p=3$ and $\Delta=3$, and (b) a complete out-tree $T_{s}^{+}(3,3)$.

Figure 6. $T^{\prime}(3,3)$.

For convenience, we replace alphabet $\{1, \ldots, \Delta\}$ by $\{0, \ldots, \Delta-1\}$. The vertices of $T^{\prime}(\Delta, p)$ are marked by pairs of non-negative integers in accordance with the following rules:
(i) t and s are denoted by $v_{0,0}$ and $v_{0,1}$, respectively, and
(ii) for a vertex already marked by $v_{i, t}$ with $(i, t) \neq(0,0)$ and $i<p$, all the out-neighbours of $v_{i, t}$ are denoted by $v_{i+1,(t-1) \Delta+1}, v_{i+1,(t-1) \Delta+2}$, $\ldots, v_{i+1, t \Delta}$, respectively.

Clearly, different vertices have different marks. We claim that

$$
\begin{equation*}
1 \leqslant n \leqslant \Delta^{i}, \text { for each vertex } v:=v_{i, n} \text { with } 1 \leqslant i \leqslant p \tag{4.1}
\end{equation*}
$$

To prove this claim, we use induction on i. For $i=1$, since v is an out-neighbour of $s:=v_{0,1}, 1 \leqslant n \leqslant \Delta$. Now let $i \geqslant 2$. Suppose that the assertion is true for smaller i. Let u be the unique in-neighbour of v, marked by $v_{i-1, t}$.

By the marked rules,

$$
\begin{equation*}
(t-1) \Delta+1 \leqslant n \leqslant t \Delta \tag{4.2}
\end{equation*}
$$

By the induction hypothesis, we have

$$
\begin{equation*}
1 \leqslant t \leqslant \Delta^{i-1} \tag{4.3}
\end{equation*}
$$

Hence claim (4.1) follows from (4.2) and (4.3).
Now we define an integer-valued function f on the vertex-set of $T^{\prime}(\Delta, p)$ as follows:

$$
\begin{equation*}
f\left(v_{i, n}\right)=\Delta^{i}+n-1 \tag{4.4}
\end{equation*}
$$

for each vertex $v_{i, n}$ of $T^{\prime}(\Delta, p)$. By (4.1) and (4.4), we have

$$
\begin{equation*}
f\left(v_{i, n}\right) \leqslant \Delta^{p}+n-1 \leqslant \Delta^{p}+\Delta^{p}-1 \leqslant \Delta^{p+1}-1 . \tag{4.5}
\end{equation*}
$$

For any two distinct vertices $u:=v_{i_{1}, n_{1}}$ and $v:=v_{i_{2}, n_{2}}$, we have

$$
\begin{equation*}
f(u) \neq f(v) \tag{4.6}
\end{equation*}
$$

If $i_{1}=i_{2}$, then $n_{1} \neq n_{2}$ and

$$
f(u)=\Delta^{i_{1}}+n_{1}-1 \neq \Delta^{i_{2}}+n_{2}-1=f(v) .
$$

Otherwise, suppose that $i_{2}>i_{1}$. By (4.1) and (4.4), we have

$$
\begin{aligned}
& f(u)=\Delta^{i_{1}}+n_{1}-1 \leqslant \Delta^{i_{1}}+\Delta^{i_{1}}-1=2 \Delta^{i_{1}}-1, \text { and } \\
& f(v)=\Delta^{i_{2}}+n_{2}-1 \geqslant \Delta^{i_{2}}=\Delta^{i_{2}-i_{1}} \cdot \Delta^{i_{1}} \geqslant 2 \Delta^{i_{1}} .
\end{aligned}
$$

So (4.6) follows.
Let $l^{*}\left(v_{i, n}\right)$ be the representation of $f\left(v_{i, n}\right)$ by Δ-nary numeral system with ($p+1$)-digit. More precisely, let

$$
f\left(v_{i, n}\right)=a_{p} \Delta^{p}+a_{p-1} \Delta^{p-1}+\cdots+a_{1} \Delta+a_{0}
$$

where $0 \leqslant a_{j} \leqslant \Delta-1$ is an integer for each $0 \leqslant j \leqslant p$. Then $l^{*}\left(v_{i, n}\right)=$ $\left(a_{p}, a_{p-1}, \ldots, a_{1}, a_{0}\right)$. In the following, we show that l^{*} is a quasi- $(\alpha, p+1)$ labelling of $T^{\prime}(\Delta, p)$.

By (4.5) and (4.6), we can see that it is sufficient to show if $\left(v_{1}, v_{2}\right)$ is an arc of $T^{\prime}(\Delta, p)$, then $\left(l_{2}^{*}\left(v_{1}\right), \ldots, l_{p+1}^{*}\left(v_{1}\right)\right)=\left(l_{1}^{*}\left(v_{2}\right), \ldots, l_{p}^{*}\left(v_{2}\right)\right)$. If $v_{1}=t$ and $v_{2}=$ $s, f\left(v_{1}\right)=0$ and $f\left(v_{2}\right)=1$. Then $l^{*}(u)=(0, \ldots, 0,0)$ and $l^{*}(v)=(0, \ldots, 0,1)$.

So suppose that $v_{1}=v_{i, n_{1}} \neq t$. As $\left(v_{1}, v_{2}\right)$ is an arc, we have $v_{2}=v_{i+1, n_{2}}, n_{2}=$ $\left(n_{1}-1\right) \Delta+m(1 \leqslant m \leqslant \Delta)$ and

$$
\begin{aligned}
f\left(v_{2}\right) & =\Delta^{i_{2}}+n_{2}-1 \\
& =\Delta^{i_{1}+1}+\left(n_{1}-1\right) \Delta+m-1 \\
& =\left(\Delta^{i_{1}}+n_{1}-1\right) \Delta+m-1 \\
& =f\left(v_{1}\right) \Delta+m-1 .
\end{aligned}
$$

If $f\left(v_{1}\right)=a_{p} \Delta^{p}+a_{p-1} \Delta^{p-1}+\cdots+a_{1} \Delta+a_{0}, 0 \leqslant a_{i}<\Delta, i=0, \ldots, p$, then $f\left(v_{2}\right)=a_{p-1} \Delta^{p}+\cdots+a_{0} \Delta+m-1$. This implies that $l^{*}\left(v_{1}\right)=\left(0, a_{p-1}, \ldots, a_{1}, a_{0}\right)$ and $l^{*}\left(v_{2}\right)=\left(a_{p-1}, \ldots, a_{1}, a_{0}, m-1\right)$. Accordingly,

$$
\left(l_{2}^{*}\left(v_{1}\right), \ldots, l_{p+1}^{*}\left(v_{1}\right)\right)=\left(l_{1}^{*}\left(v_{2}\right), \ldots, l_{p}^{*}\left(v_{2}\right)\right) .
$$

As above, l^{*} is a quasi- $(\Delta, p+1)$-labelling of $T^{\prime}(\Delta, p)$.
From the above proof, we can see that for every $k \geqslant p+1$, if $l^{*}(v)$ is denoted by the representation of $f(v)$ by Δ-nary numeral system with k-digit, l^{*} will be a quasi- (α, k)-labelling of $T^{\prime}(\Delta, p)$. Hence $T_{s}^{+}(\Delta, p)$ can be $(\Delta, k)-$ labelled for $k \geqslant p+2$.

Corollary 4.2. If T_{s}^{+}is an out-tree with height p and maximum out-degree Δ, then $\alpha_{k}\left(T_{s}^{+}\right)=\Delta$ for any integer $k \geqslant p+2$.

Proof. Let k be any integer such that $k \geqslant p+2$. By lemma 2.2, we have $\alpha_{k}\left(T_{s}^{+}\right) \geqslant \Delta$. Since T_{s}^{+}is an induced subgraph of $T_{s}^{+}(\Delta, p)$, any (Δ, k)-labelling of $T_{s}^{+}(\Delta, p)$ induces a (Δ, k)-labelling of T_{s}^{+}. By theorem 4.1, we have that $T_{s}^{+}(\Delta, p)$ has a (Δ, k)-labelling. So $\alpha_{k}\left(T_{s}^{+}\right) \leqslant \Delta$. Hence $\alpha_{k}\left(T_{s}^{+}\right)=\Delta$.

Corollary 4.3. An out-tree T_{s}^{+}is a DNA graph if and only if $\Delta\left(T_{s}^{+}\right) \leqslant 4$.
Proof. Let T_{s}^{+}be an out-tree with height p and maximum out-degree Δ. If $\Delta \leqslant 4$, by theorem 4.1, T_{s}^{+}can be $(\Delta, p+2)$-labelled, and T_{s}^{+}is thus a DNA graph. Conversely, if T_{s}^{+}is a DNA graph, by lemma 2.2 , we have $\Delta \leqslant 4$.

5. Self-adjoint digraphs

A digraph D is self-adjoint if D is isomorphic to its line digraph $L(D)$. Let \mathcal{A} be the set of all digraphs A, for which there exists a digraph sequence $A_{0}, \ldots, A_{m}=A$ satisfying $A_{0}=C_{n}$ and each A_{i+1} arises from A_{i} by adding some new vertices v_{1}, \ldots, v_{t} and arcs $\left(v, v_{1}\right), \ldots,\left(v, v_{t}\right)$ where v is a vertex of A_{i}. Define $\mathcal{A}^{c}=\left\{A^{c} \mid A \in \mathcal{A}\right\}$. We can see that a digraph $A \in \mathcal{A}\left(\mathcal{A}^{c}\right)$ if and only if A is the union of a cycle C_{n} and n pairwise disjoint out-trees (in-trees)
T_{1}, \ldots, T_{n} such that each T_{i} has the root v_{i} lying in C_{n}. Hao [6] showed that a connected digraph A is self-adjoint if and only if $A \in \mathcal{A}$ or \mathcal{A}^{c}.

By lemma 2.3, if A can be (α, k)-labelled, then A^{c} also can be (α, k) labelled. So we only consider \mathcal{A} in the following. For every digraph $A \in \mathcal{A}$, it is easy to see $d^{-}(v)=1$ for every $v \in V(A)$. Recall that $\Delta=\Delta^{+}$is the maximum out-degree of A and n the length of the unique cycle in A. Let $p:=$ $\max \left(p_{1}, \ldots, p_{n}\right)$, where p_{i} is the height of T_{i} for each $1 \leqslant i \leqslant n$.

We define a sign system as $v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right)\left(1 \leqslant i \leqslant n, 0 \leqslant a_{j} \leqslant \Delta-1,0 \leqslant\right.$ $t \leqslant p)$ to represent the vertices of A. First, we denote the vertices of the unique cycle C_{n} by $v_{1}^{0}, \ldots, v_{n}^{0}$ in a way. Next let u_{1}, \ldots, u_{k} be the out-neighbours of v_{i}^{0} in T_{i} and mark u_{j} by $v_{i}^{1}(j), j=1,2, \ldots, k$. Then for every already marked vertex $v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right), t \geqslant 1$, its all out-neighbours $w_{0}, \ldots, w_{k^{\prime}}$ are marked by $v_{i}^{t+1}\left(a_{1}, \ldots, a_{t}, a_{t+1}\right), a_{t+1}=0,1, \ldots, k^{\prime}$. For example, figure 7 gives such a sign system of vertices of a self-adjoint graph A_{1} with $\Delta=2, n=3$ and $p=3$. Since A is a cycle for $\Delta=1$, assume that $\Delta \geqslant 2$ in the following.

Theorem 5.1. Let $A \in \mathcal{A}, n, p, \Delta \geqslant 2$ be defined as above. Then A can be ($\Delta, k+$ 1)-labelled, where $k=\left(\left\lceil\frac{p}{n}\right\rceil+1\right) n$.

Proof. We first construct a self-adjoint digraph $A^{\prime} \in \mathcal{A}$ from A by adding some new vertices and arcs: every T_{i} of A^{\prime} is rooted at v_{i}^{0} with height $p, d_{T_{i}}^{+}\left(v_{i}^{0}\right)=$ $\Delta-1$ and any other vertex has out-degree Δ if its layer number is less than p. So both A and A^{\prime} have the same height, and A is an induced subgraph of A^{\prime}. By lemma 2.1, if A^{\prime} can be quasi-($\left.\Delta, k\right)$-labelled, then A^{\prime} can be $(\Delta, k+1)$-labelled and A can be $(\Delta, k+1)$-labelled. So it is sufficient to give a quasi- (Δ, k)-labelling of A^{\prime} in the following.

For convenience, we replace alphabet $\{1, \ldots, \Delta\}$ with $\{0, \ldots, \Delta-1\}$. Let $k_{1}:=\left\lceil\frac{p}{n}\right\rceil, k:=\left(k_{1}+1\right) n$ and $r=k_{1} n-p$. Then $0 \leqslant r<n$ and $p=k_{1} n-r$. First, we label the vertices of the cycle C_{n} as follows. Let $l\left(v_{i}^{0}\right):=(\underbrace{S_{n+1-i}, \ldots, S_{n+1-i}}_{k_{1}+1})$, where $S_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is a sequence of length n such that the i th position is 1 and the others are 0 , for $i=1, \ldots, n$. Obviously, this is a quasi- $(2, k)$ labelling of C_{n}. Hence for any two integers $i<j$, we have that

$$
\begin{equation*}
l\left(v_{j}^{0}\right)=\left(l_{1+j-i}\left(v_{i}^{0}\right), l_{2+j-i}\left(v_{i}^{0}\right), \ldots, l_{k}\left(v_{i}^{0}\right), l_{1}\left(v_{i}^{0}\right), \ldots, l_{j-i}\left(v_{i}^{0}\right)\right) \tag{5.1}
\end{equation*}
$$

Next we label any other vertex v of A. If $v=v_{i}^{1}(j)$, then v is an out-neighbour of v_{i}^{0}. Let $l\left(v_{i}^{1}(j)\right):=\left(l_{2}\left(v_{i}^{0}\right), \ldots, l_{k}\left(v_{i}^{0}\right), a\right)$, where $a=1-l_{1}\left(v_{i}^{0}\right)$, if $j=1 ; a=j$, otherwise. If $v=v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right)$ for $2 \leqslant t \leqslant p$, then v is an out-neighbour of $u=v_{i}^{t-1}\left(a_{1}, \ldots, a_{t-1}\right)$. Let $l\left(v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right)\right):=\left(l_{2}(u), \ldots, l_{k}(u), a_{t}\right)$.

We claim that

$$
l_{j}\left(v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right)\right)= \begin{cases}l_{j+t}\left(v_{i}^{0}\right), & j \leqslant k-t \tag{5.2}\\ 1-l_{1}\left(v_{i}^{0}\right), & j=k-t+1 \text { and } a_{1}=1 \\ a_{j+t-k}, & \text { otherwise }\end{cases}
$$

To prove this claim, for each fixed i we proceed by induction on t. For $t=0$ and 1 , it is trivially true. So let $t \geqslant 2$ and suppose that the claim is true for smaller t. Let $v:=v_{i}^{t}\left(a_{1}, \ldots, a_{t}\right)$ and let u be the unique in-neighbour of v. Then $u=v_{i}^{t-1}\left(a_{1}, \ldots, a_{t-1}\right)$.

For $j=1,2, \ldots, k-1, l_{j}(v)=l_{j+1}(u)$. Further, if $j \leqslant k-t$, then $j+1 \leqslant$ $k-(t-1)$ and

$$
l_{j}(v)=l_{j+1}(u)=l_{j+1+(t-1)}\left(v_{i}^{0}\right)=l_{j+t}\left(v_{i}^{0}\right)
$$

by the induction hypothesis; if $j=k-t+1$ and $a_{1}=1$, then $j+1=k-(t-1)+1$ and

$$
l_{j}(v)=l_{j+1}(u)=1-l\left(v_{i}^{0}\right) .
$$

Otherwise, if $j \leqslant k-1$,

$$
l_{j}(v)=l_{j+1}(u)=a_{j+1+(t-1)-k}=a_{j+t-k}
$$

If $j=k, l_{j}(v)=a_{t}$ from the above labelling method. So claim (5.2) follows.
Finally, we show that this labelling l is a quasi- (Δ, k)-labelling of A^{\prime}. It is sufficient to verify that distinct vertices of A^{\prime} have different labels. Suppose not, there exist two distinct vertices u and v of A^{\prime} such that $l(u)=l(v)$. There are two cases to be considered.
Case 1. u, v lie in the same tree T_{i}.
Let $u=v_{i}^{t}\left(b_{1}, \ldots, b_{t}\right)$ and $v=v_{i}^{q}\left(c_{1}, \ldots, c_{q}\right)$. If $t=q$, then there exists $j \in$ $\{1,2, \ldots, t\}$ such that $b_{j} \neq c_{j}$ since $u \neq v$. Hence, we have $l_{j+k-t}(u) \neq l_{j+k-t}(v)$ by equation (5.2). So suppose $q>t$. By simple computation and comparison we obtain $n \leqslant k-q \leqslant k-t$. Since $\left(l_{1}(u), \ldots, l_{n}(u)\right)=\left(l_{1}(v), \ldots, l_{n}(v)\right)$, by equation (5.2) we can see that

$$
\begin{equation*}
\left(l_{1+t}\left(v_{i}^{0}\right), \ldots, l_{n+t}\left(v_{i}^{0}\right)\right)=\left(l_{1+q}\left(v_{i}^{0}\right), \ldots, l_{n+q}\left(v_{i}^{0}\right)\right) \tag{5.3}
\end{equation*}
$$

which is equivalent to

$$
\left(l_{1}\left(v_{i+t}^{0}\right), \ldots, l_{n}\left(v_{i+t}^{0}\right)\right)=\left(l_{1}\left(v_{i+q}^{0}\right), \ldots, l_{n}\left(v_{i+q}^{0}\right)\right)
$$

from equation (5.1); that is, $S_{n+1-(t+i)}=S_{n+1-(q+i)}$. Then we have $q \equiv t(\bmod$ n). Since $q>t$, there exists an integer $g \geqslant 1$ such that $q=t+g n$. But by equation (5.2), we have

$$
\begin{aligned}
l_{k-q+1}(v) & =1-l_{1}\left(v_{i}^{0}\right) \text { or } c_{1} \quad\left(c_{1} \geqslant 2\right), \text { and } \\
l_{k-q+1}(u) & =l_{k-t-g n+1}(u)=l_{k-g n+1}\left(v_{i}^{0}\right)=l_{\left(k_{1}-g+1\right) n+1}\left(v_{i}^{0}\right)=l_{1}\left(v_{i}^{0}\right)
\end{aligned}
$$

Hence $l_{k-q+1}(u) \neq l_{k-q+1}(v)$, a contradiction.
Case 2. u, v lie in different trees T_{i} and $T_{j}(i \neq j)$.
Let $u=v_{i}^{t}\left(b_{1}, \ldots, b_{t}\right)$ and $v=v_{j}^{q}\left(c_{1}, \ldots, c_{q}\right)$. Without loss of generality, suppose that $q \geqslant t$ and $i=1$. Considering the first n digits of $l(u)$ and $l(v)$, by equation (5.1), we have

$$
\begin{aligned}
& \left(l_{1}(u), \ldots, l_{n}(u)\right)=\left(l_{1+t}\left(v_{1}^{0}\right), \ldots, l_{n+t}\left(v_{1}^{0}\right)\right)=\left(l_{1}\left(v_{1+t}^{0}\right), \ldots, l_{n}\left(v_{1+t}^{0}\right)\right)=S_{n+1-(1+t)}, \\
& \left(l_{1}(v), \ldots, l_{n}(v)\right)=\left(l_{1+q}\left(v_{j}^{0}\right), \ldots, l_{n+q}\left(v_{j}^{0}\right)\right)=\left(l_{1}\left(v_{j+q}^{0}\right), \ldots, l_{n}\left(v_{j+q}^{0}\right)\right)=S_{n+1-(j+q)} .
\end{aligned}
$$

Hence, $1+t \equiv q+j(\bmod n)$. Since $q \geqslant t$, there exists an integer $g \geqslant 1$ such that $q+j=1+t+g n$. By equation (5.2), we have

$$
\begin{aligned}
& l_{k-q+1}(v)=1-l_{1}\left(v_{j}^{0}\right) \text { or } c_{1}\left(c_{1} \geqslant 2\right) \\
& l_{k-q+1}(u)=l_{k-t-g n+j}(u)=l_{k-g n+j}\left(v_{1}^{0}\right)=l_{\left(k_{1}-g+1\right) n+j}\left(v_{1}^{0}\right)=l_{j}\left(v_{1}^{0}\right)=l_{1}\left(v_{j}^{0}\right)
\end{aligned}
$$

So $l_{k-q+1}(u) \neq l_{k-q+1}(v)$, a contradiction.
By cases 1 and 2, we can see that all vertices of A^{\prime} have pairwise different labels. Accordingly, l is a quasi- (Δ, k)-labelling of A^{\prime}.

As an example we now give a (2,7)-labelling of a self-disjoint digraph A_{1} from the method used in the proof of theorem 5.1. The sign system of vertices of A_{1} were previously given in figure 7 . We first construct another self-adjoint graph A_{1}^{\prime} as shown in figure $8\left(\right.$ a) such that A_{1} is an an induced subgraph of A_{1}^{\prime}. Then, a quasi-(2,6)-labelling l of A_{1}^{\prime} is constructed in figure 8(a). Finally, l can

Figure 7. A self-adjoint graph A_{1} with $\Delta=2, n=3, p=3$ and a sign system of vertices.

Figure 8. (a) A quasi-(2,6)-labelling of A_{1}^{\prime} with $\Delta=2, p=3$, and (b) a (2,7)-labelling of A_{1}.
be transformed into a (2,7)-labelling of A_{1}^{\prime} by lemma 2.1 , which induces a $(2,7)$ labelling of A_{1} as shown in figure 8(b).

Combining theorem 5.1 with lemmas 2.2 and 2.3 , we can obtain the following result.

Corollary 5.2. A connected self-adjoint digraph A is a DNA graph if and only if $\Delta \leqslant 4$.

Acknowledgment

Research supported by NSFC and TRAPOYT.

References

[1] W. Bains and G.C. Smith, A novel method for nucleic acid sequence determination, J. Theoret. Biol. 135 (1988) 303-307.
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, (Springer-Verlag, London, 2001).
[3] J. Błażewicz, P. Formanowicz, M. Kasprzak and D. Kobler, On the recognition of de Bruijn graphs and their induced subgraphs, Discrete Math. 245 (2002) 81-92.
[4] J. Błazewicz, A. Hertz, D. Kobler and D. de Werra, On some properties of DNA graphs, Discrete Appl. Math. 98 (1999) 1-19.
[5] N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. 49 (1946) 758-764 (Indagationes Math. 8 (1946) 461-467).
[6] J. Hao, The adjoints of DNA graphs, J. Math. Chem. 37 (2005) 333-346.
[7] M. Imori, M. Matsumoto and H. Yamada, The line digraph of a regular and pancircular digraph is also regular and pancircular, Graphs Combin. 4 (1988) 235-239.
[8] R. Pendavingh, P. Schuurman and G.J. Woeginger, Recognizing DNA graphs is difficult, Discrete Appl. Math. 127 (2003) 85-94.

[^0]: *Corresponding author.

